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Abstract. Both distribution of terrestrial plants and 
species composition in flood plain communities are 
strongly influenced by flooding (waterlogging, par- 
tial submergence, or submergence). The interaction 
between a plant's flooding resistance and the sea- 
sonal timing, duration, depth, or frequency of flood- 
ing often determines plant distribution in flood 
plains. Flooding may be accompanied by marked 
physical changes in light, carbon availability, diffu- 
sion rate of gases, and density of the environment. 
Various physiological processes may be affected by 
these flooding-induced physical changes, including 
aerobic respiration, photosynthesis, and processes 
in which light acts as a source of information (e.g., 
phytochrome photoequilibrium). Certain plant spe- 
cies acclimatize and adapt to these physical changes 
to relieve the constraints imposed by the flooded 
environment .  Underwate r  photosynthesis ,  en- 
hanced shoot elongation, adventitious roots, and 
aerenchyma formation are typical adaptive re- 
sponses which are believed to improve the oxygen 
status of submerged plants. Ethylene and other 
plant hormones play a central role in the initiation 
and regulation of most of these adaptive responses, 
which permit "escape" from anaerobiosis. Mecha- 
nisms of direct tolerance of anaerobic conditions, 
such as a vigorous fermentative respiratory path- 
way, are of particular importance when the plant is 
very deeply submerged, or during the night and 
when the water is sufficiently turbid to exclude 
light. 

Studies on the cosmopolitan genus Rumex, dis- 
tributed in a flooding gradient on river flood plains, 
have integrated plant hormone physiology with 
plant ecology. Rumex species showed a high degree 
of interspecific variation in ethylene production 
rates, endogenous ethylene concentrations, ethyl- 
ene sensitivity, and ethylene-mediated growth re- 
sponses. The field distribution of Rurnex species in 
flooding gradients is explained in terms of a balance 

between endogenous ethylene concentrations and 
sensitivity towards this growth regulator ("ethylene 
economy"). Much data has been gathered using a 
recently developed laser-driven photoacoustic de- 
tection technique capable of detecting six parts of 
ethylene in 1012 parts air flowing continuously over 
the plant. 

Flooding is common throughout the world (Koz- 
lowski 1984). It can have a severe impact on terres- 
trial plant life and also interfere with human activ- 
ities in these areas (Blom 1990A, Maltby 1991). 
Floods vary significantly in seasonal timing, dura- 
tion, depth, and frequency (Voesenek 1990). When 
this is combined with the wide variation in the ex- 
tent of flooding resistance among terrestrial plant 
species, one can expect a great influence on the 
occurrence and distribution of plant species (Blom 
et al. 1990). Various aspects of flooding and plant 
responses have been extensively reviewed in books 
(Crawford 1987, Etherington 1983, Hook and Craw- 
ford 1978, Hook et al. 1988, Jackson et al. 1991, 
Kozlowski 1984), special journal  issues (Blom 
1990B), and separate papers (Armstrong 1979, 1982, 
Armstrong et al. 1991, Blom 1990C, Crawford 1982, 
1983, 1989, Davy et al. 1990, Drew 1983, 1990, 
Drew and Lynch 1980, Ernst 1990, Jackson 1982, 
1985A, 1985B, 1987, Laanbroek 1990, Osborne 
1984, Ridge 1985). These articles provide clear ev- 
idence that the physical changes accompanying 
flooding have a strong impact on plant hormones 
and that these in turn play a central role in the ini- 
tiation and regulation of many acclimatic and/or 
adaptive responses of terrestrial plants upon flood- 
ing (see also Reid and Bradford 1984). In this con- 
text a key role is reserved for the gaseous plant 
hormone ethylene (Jackson 1985A, 1985B, 1987, 
1990, Jackson and Pearce 1991, Ku et al. 1970, Mus- 
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grave et al. 1972, Osborne 1984, Ridge 1985, 1987). 
Only a few studies on ethylene and flooding, how- 
ever, try to relate interspecific variation in physio- 
logical mechanisms to the ecology of those plant 
species. Ridge (1987) related two types of shoot 
elongation in response to submergence (large, rapid 
growth vs. small, delayed growth) with flooding re- 
gimes (predominantly aquatic vs. emergents in shal- 
low waters, marshes, or in areas subjected to brief 
shallow floods). Ridge also presented a provoking 
analysis of both costs and benefits of the two types 
of ethylene-mediated shoot elongation. Mitchell 
(1976) and Osborne (1984) also attempted to relate 
the variation in shoot elongation under water of 
Polygonum species and Ranunculus species to their 
field distribution. Dodds and coworkers (1982) ex- 
amined the relation between waterlogging resis- 
tance and ethylene metabolism in 21 different cul- 
tivars of Vicia faba. They suggested that the water- 
logging resistance of the various cultivars was 
related to the ability to remove (metabolize) in- 
creased amounts of ethylene. Finally, Jackson and 
coworkers (1987) compared rice varieties of differ- 
ent submergence tolerance, with respect to their 
ethylene responses. Accumulated ethylene was ca- 
sually related to fast leaf extension and chlorosis in 
the submergence-intolerant forms of rice. Pearce 
and Jackson (1991) compared submergence re- 
sponses of Barnyard grass (Echinochloa oryzoides) 
and rice in relation to gaseous changes in the plants. 
The same changes (i.e., oxygen shortage, elevated 
ethylene, and carbon dioxide) brought about oppo- 
site effects in the two species growing in the same 
habitat. Poorly aerated solutions enhanced shoot 
growth in rice and inhibited it in Echinochloa. 
These two species probably have contrasting strat- 
egies for survival. 

Overall, little is known about the hormonal regu- 
lation of ecologically significant processes in plant 
development. In a different area of plant physiolog- 
ical ecology, Dijkstra et al. (1990) showed a positive 
correlation between the relative growth rates of two 
inbred lines of Plantago major (the fast-growing P. 
major spp. pleiosperma and the slow-growing P. 
major spp. major) and their endogenous gibberellin 
concentrations. A reversion of the growth rate of 
both lines was realized by the application of exog- 
enous GA 3 and addition of specific gibberellin in- 
hibitors (Dijkstra and Kuiper 1989). The ecological 
significance of differences in growth rate is exten- 
sively discussed in Grime and Hunt (1975), Grime 
(1979), Chapin (1980), and Tilman (1988). 

Up to now, although one was aware of the im- 
portant role of hormones in adaptive responses of 
plants upon flooding, flooding resistance was re- 

lated more to root porosity (aerenchyma) (Arm- 
strong 1979, Justin and Armstrong 1987, Laan et al. 
1989, Smirnoff and Crawford 1983) and to the ter- 
minal products of anaerobic respiration (McMan- 
mon and Crawford 1971, Roberts et al. 1984A) than 
to the role of hormones. In the present paper, the 
ethylene economy of several Rumex species, de- 
fined as the balance between endogenous ethylene 
concentration and sensitivity towards this growth 
regulator (see Voesenek 1990), will be related to the 
flooding resistance of the species. It is an intriguing 
possibility that plant distribution and flooding resis- 
tance in dry-wet gradients correlate with differ- 
ences in hormone physiology. Firstly, the selection 
of the genus Rumex as a model for study will be 
discussed, followed by a survey of general environ- 
mental changes induced by flooding and the impact 
on terrestrial plants. The ethylene economy will be 
introduced by a description of a recently developed 
photoacoustic detection technique which can mon- 
itor ethylene levels as low as 6 ppt (6:1012), and then 
will be discussed in relation to waterlogging, com- 
plete submergence, and field distribution of Rumex 
species. 

R u m e x  as  a M o d e l  

The present study concentrates on the correlative 
and possibly causal relationship between ethylene 
economy and flooding resistance and plant distribu- 
tion. Three approaches were integrated, that is, 
ecophysiology, comparative physiology, and a 
study of the complete life cycle. Physiological ecol- 
ogy may provide insights into physiological mech- 
anisms underlying acclimatic responses and adap- 
tive traits of plants under stress. When comparing 
closely related plant species distributed along a 
stress gradient, a species' position within such a 
gradient can be linked directly to specific "fitness- 
increasing" physiological mechanisms (Blom 1987, 
Osmond et al. 1987). Since stress may have differ- 
ent effects on consecutive stages in the life cycle, 
studying several stages in the life cycle is a prereq- 
uisite to achieve complete understanding of plant 
distribution (Grime 1979). 

The choice of the cosmopolitan genus Rumex as a 
model to study the relation between ethylene econ- 
omy and flooding resistance is based on the follow- 
ing arguments: 

1. Eight Rumex species occur in Dutch river flood 
plains within a clearly defined range of the flood- 
ing gradient (Fig. 1). This suggests differential 
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Fig 1. The zonation of eight R u m e x  species 
in the river flood plains of the river Rhine 
in The Netherlands. 

resistance towards abiotic and biotic factors ex- 
isting in this gradient. 

2. Rumex species are very suitable for an experi- 
mental approach due to (a) the large amounts of 
seeds which can be collected directly in the field, 
(b) almost 100% germination in petri dishes ex- 
posed to a 12-h photoperiod at 25~ alternating 
with a 12-h dark period at 10~ (Voesenek et al. 
1992A), (c) a high relative growth rate (>150 mg 
g-~ day -~) (Poorter and Remkes 1990, Voe- 
senek et al. 1989), and (d) the manageable size of 
seeds, seedlings, and adult plants. 

The flood plains of river areas where Rumex is 
found range from nearly permanent flooded parts to 
erratically, infrequently inundated regions. Such 
river areas are highly dynamic ecosystems gov- 
erned by strongly fluctuating water levels. The 
basic water discharge of the Rhine system is char- 
acterized by elevated levels during the winter 
and spring and relatively low levels during the late 
summer and autumn months; a pattern closely 
related to increases in rainfall in the winter and 
melting snow in spring. Superimposed on this ba- 
sic pat tern are the unpredic table  high drain- 
age peaks that occur throughout the year. These 
peaks in water  level are related to excess ive 
precipitation in the Rhine catchment area and may 
result in flooding of  adjacent riparian habitats 
in both winter and summer. Riparian habitats of 
Dutch river areas are characterized by a distinct 
pattern of natural and man-made depressions and 
elevations, such as former river channels, sand, 
clay and gravel pits, river levees, and dikes. The 
continuum existing between depressions and eleva- 
tions creates different flooding regimes and, as a 
consequence, gradients in intensity and extent of 
environmental stress and disturbance (see Grime 
1979). 

The Impact of Flooding on Terrestrial Plants 

Flooding-Induced Environmental Changes 

Historically, most research on flooding was concen- 
trated on soil waterlogging-induced changes in plant 
growth and metabolism. Therefore, flooding toler- 
ance is often used as synonymous with waterlog- 
ging tolerance. We prefer to use the general terms 
flooding and inundation to designate increased wa- 
ter levels without specific reference to the height of 
the water level. Flooding may result in inundation 
of soil and roots only (waterlogging), in complete 
inundation of roots and shoots (submergence), or in 
any level in between (partial submergence). This 
section will focus mainly on environmental changes 
and acclimatic responses of terrestrial plants in- 
duced by complete submergence; less attention will 
be paid to waterlogging. 

As soon as a soil is flooded and all pores are filled 
with water, gas exchange between the soil and the 
atmosphere is strongly hampered (Jackson and 
Drew 1984, Ponnamperuma 1984). The trapped ox- 
ygen in the soil is chemically reduced to water by 
the terminal step in the respiratory electron trans- 
port chain of microorganisms and plant roots. After 
complete oxygen depletion, anaerobic microorgan- 
isms use various oxidized soil components as elec- 
tron acceptors, leading to a sharp decline in the soil 
redox potential (Etherington 1983). The electro- 
chemical changes in the soil, induced by overwet 
conditions, result in an increase of potentially toxic 
components (e.g., Mn z+ , F e  2+ , H2S)  (Ernst 1990). 
These electrochemical changes in flooded soils, and 
related processes of anaerobic decomposition of or- 
ganic matter, have been extensively reviewed by 
Ponnamperuma (1984). 

Submergence has also a dramatic impact on the 
aerial part of terrestrial plants as the whole plant is 
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suddenly surrounded by water. This environmental 
change significantly affects the quantity and quality 
of irradiation, carbon availability, diffusion rate of 
gases into and out of the plant, and density of the 
plant's immediate surroundings. 

The water covering a shoot causes an exponential 
decline of photosynthetically active radiation (PAR) 
with increasing water depth (Spence 1981). At solar 
elevation angles of less than 41.4 ~ , direct solar ra- 
diation is completely reflected by a smooth water 
surface (Weinberg 1976). This will result in a dra- 
matic decrease in the photon flux density at plant 
level (Holmes and Klein 1987). A third factor which 
causes an attenuation of radiation under water is 
turbidity. Suspended particles cause a decline of 
radia t ion by both  scat ter ing and absorpt ion  
(Holmes and Klein 1987). When radiation passes 
into both clear and turbid water, the red/far-red ra- 
tio increases with depth. In turbid water the pene- 
tration of UV A and B wavebands is strongly re- 
duced. In addition, a proportionally greater deple- 
tion of far-red light, compared to red light, is 
observed (Holmes and Klein 1987). 

A further factor that differs significantly from an 
aerial environment is carbon availability (Setter et 
al. 1987). Submerged shoots of terrestrial plants are 
exposed to three different interchangeable forms of 
dissolved inorganic carbon (DIC), occurring in a 
well-defined equilibrium: CO 2 < = > HCO 3- < = > 
CO32- . This equilibrium is shifted to the right by 
increasing pH and to the left by decreasing pH 
(Bowes 1987, Sand-Jensen 1987). In submerged, as 
well as aerial shoots, carbon has to dissolve before 
fixation can take place. However,  the diffusion re- 
sistance for CO2 in an aqueous solution is high due 
to the 104 times slower diffusion rate and the long 
pathway that is many times greater than in an aerial 
environment (Bowes 1987). It should be born in 
mind that both wave action and water currents do 
have a strong influence on the diffusion resistance 
for CO2 and 0 2, due to their impact on the boundary 
layer around the shoot. The low diffusion rate of 
gases in water also strongly interferes with diffusion 
of ethylene, leading to entrapment of this gaseous 
growth regulator in the plant tissue under sub- 
merged conditions (Musgrave et al. 1972, Ridge 
1987). 

The phenomenon of heterophylly gives a very 
clear idea of the very large impact the problem of 
diffusion resistance can have on plant development 
in aquatic environments. Plants exhibiting this phe- 
nomenon can form two very different types of 
leaves, often on the same stem: aerial leaves and 
submersed leaves. The latter are characterized by a 
small, thin, and/or finely dissected morphology and 
a lack of stomata and cuticule. This morphology 

maximalizes the surface area/volume ratio to favor 
gas diffusion. In an aerial environment, however, 
such a submersed leaf would easily desiccate 
(Bowes 1987). 

The high density of water causing the relatively 
low diffusion rate of gases is not just detrimental for 
a flooded plant, but its density also provides the 
flooded plant with support and buoyancy, thereby 
allowing a reduction of investment in structural 
components (Bowes 1987, Sculthorpe 1967). Since 
a submerged plant is literally surrounded by nutri- 
ent solution, it may function nearly independent 
from roots and an adequate transport  system 
(Bowes 1987). 

Flooding-induced Strains and Acclimatizations 

So far we have described the physical changes of 
the environment that occur when a plant is flooded. 
This section addresses the physiological processes 
in the plant affected by these flooding-induced 
physical changes and how plants acclimatize and 
adapt physiologically to flooding. 

Under aerobic conditions respiration generates 
most of its ATP via the transfer of electrons from 
cytochrome oxidase to oxygen (the respiratory 
electron transport system). Since cells of all higher 
plants are obligate aerobes (Vartapetian et al. 1978), 
oxygen is a prerequisite for aerobic respiration to 
provide energy for ion uptake, growth, and mainte- 
nance. Anaerobic soil conditions, as induced by 
flooding, completely prevent the synthesis of ATP 
via the respiratory electron transport system (Craw- 
ford 1989). However, a net yield of 2 mole of ATP 
can still be produced under anaerobic conditions 
through the action of the glycolysis (Jackson and 
Drew 1984). This restricted yield of energy is pre- 
dominantly used for maintenance processes, while 
growth and active ion uptake are probably switched 
off (Jackson and Drew 1984, Setter et al. 1987). Ac- 
cording to Setter and coworkers (1987) the balance 
between carbohydrate supply, maintenance respira- 
tion, and growth respiration is important in estimat- 
ing the flooding tolerance of a terrestrial plant. Lack 
of oxygen is probably the most important factor lim- 
iting growth and survival of terrestrial plants in hab- 
itats with frequent floods (ap Rees et al. 1987). 

Under conditions of waterlogging or partial sub- 
mergence both wetland and nonwetland plants may 
develop new, adventi t ious roots (Hook 1984, 
Kramer 1951), which are often highly porous (Justin 
and Armstrong 1987, Laan et al. 1989). Waterlog- 
ging or partial submergence may induce longitudi- 
nal, interconnected gas spaces (aerenchyma) in 
both old and new roots. It reduces the resistance of 
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roots and shoot parts to internal passage of oxygen 
and other gases (Armstrong 1979, Crawford 1982, 
Konclovfi 1990, Laan et al. 1989). Two types of 
aerenchyma can be distinguished: the first type de- 
velops through separation of cells (schizogenous 
aerenchyma), while the partial lysis of cortical cells 
is involved in the second type (lysogenous aeren- 
chyma) (Crawford 1983, Jackson and Drew 1984). 
Little is known about the mechanisms of aeren- 
chyma formation (Justin and Armstrong 1987). 
Some evidence exists with respect to the physiolog- 
ical processes leading to cell lysis in maize roots in 
response to hypoxia. The breakdown of cortical cell 
walls is induced by enhanced endogenous ethylene 
levels. Both stimulated ethylene biosynthesis in re- 
sponse to low oxygen concentrations (hypoxia) and 
entrapment of produced ethylene within submerged 
roots explain the significant increase of the internal 
ethylene concentration in a flooded root (Drew 
1987, Jackson 1982). It is also possible that exoge- 
nous ethylene, most probably of microbiological or- 
igin, enters the roots (Jackson and Pearce 1991). 
Jackson and coworkers (1985A) demonstrated that 
aminoethoxyvinylglycine (AVG), an inhibitor of 
ethylene biosynthesis, blocked the induction of aer- 
enchyma development. Simultaneous addition of 
1-amino-1-cyclopropanecarboxylic acid (ACC), the 
rate-limiting ethylene precursor, overruled the in- 
hibitory effect of AVG: aerenchyma was again in- 
duced in roots, demonstrating that AVG did not act 
as a general inhibitor of plant metabolism. 

In order to have functional significance, aeren- 
chyma must permit internal aeration (i.e., supply of 
oxygen from the atmosphere or photosynthesis via 
aerial shoot parts to roots) (Laan et al. 1989, 1990). 
Experimental evidence for the process of internal 
aeration is reviewed by Jackson and Drew (1984). 
Very recently, Laan et al. (1990) showed that an 
increase in root porosity significantly enhanced the 
internal oxygen transport in two terrestrial Rumex 
species from frequently flooded habitats (R. crispus 
and R. rnaritimus). They also showed that the in- 
ternal aeration was positively correlated to the total 
leaf area of Rumex plants protruding above the wa- 
ter surface. 

It is possible, however, that despite aerenchyma 
and internal aeration, insufficient oxygen may be 
present throughout the root tissue to maintain aer- 
obic respiration at a rate that can be compared to 
the fully aerobic tissues (Drew et al. 1985). The de- 
pendence of the final oxygen concentration in the 
root apex and elsewhere (e.g., stele) on factors such 
as root length, root porosity, root radius, stelar ra- 
dius, oxygen consumption of the soil, and the root 
respiration rate has been modeled by Armstrong 
(1979) and Armstrong and Beckett (1987). Internal 

aeration will also depend on the generation and uti- 
lization of oxygen produced by underwater photo- 
synthesis, and the enhanced shoot elongation in re- 
sponse to complete submergence. The latter will al- 
low the shoot to gain access to atmospheric oxygen 
if the shoot reaches the water surface. Since most 
oxygen will enter the plant via stomata (Gaynard 
and Armstrong 1987) or via micropores (see Nouchi 
et al. 1990), the importance of a large leaf area re- 
gaining a position above the water surface is un- 
doubted (Laan et al. 1990, Van der Sman et al. 1991, 
Voesenek 1990). In order to achieve this shoot- 
atmosphere contact, petioles and/or internodes 
must maintain or enhance their elongation rate. 
Shoot elongation, mediated by the gaseous plant 
hormone ethylene, has been described for various 
aquatic, amphibious, and terrestrial plants (Ku et 
al. 1970, Musgrave et al. 1972, Osborne 1984, Ridge 
1987). However, in spite of the close functional re- 
lationship between shoot elongation and aeren- 
chyma development, almost no research has con- 
centrated on the correlation between these two phe- 
nomena (see Jackson 1989). It may be expected that 
plant species which are able to elongate shoot parts 
also exhibit relatively high root and shoot porosi- 
ties. According to Smirnoff and Crawford (1983) 
high root porosities are defined as those exceeding 
10%. A literature survey in Table 1, in which data 
on root porosity and shoot elongation capacity of 
both aquatic and terrestrial plants are compiled, 
showed that elongation capacity always is accom- 
panied by high root porosities thus confirming our 
expectation. However,  under conditions of very 
deep water layers covering a flooded plant, during 
night periods or at high turbidity, it is likely that 
aeration stress in the roots cannot be relieved (Wa- 
ters et al. 1989). A switch to anaerobic metabolism, 
induced during a transient hypoxic phase (Johnson 
et al. 1989, Saglio et al. 1988, Waters et al. 1991), 
will then be a preprequisite for survival. 

Durifig anaerobiosis, glycolysis can take place 
only as long as the generated NADH can be oxi- 
dized to NAD. This can be effected by various fer- 
mentative pathways, each having its own terminal 
product (e.g., glycerol, shikimate, lactate, malate, 
aspartate, ethanol, alanine) (Crawford 1978, Jack- 
son and Drew 1984, ap Rees et al. 1987). The fer- 
mentative pathways generating ethanol, lactate, 
and alanine yield net ATP, although the amounts 
are very limited (Jackson and Drew 1984). Further- 
more, these routes are characterized by an ex- 
tremely inefficient use of substrate and the environ- 
mental loss of carbon-containing end products, par- 
t icularly ethanol  which diffuses out  into the 
surrounding water. This may avoid accumulation of 
the potentially toxic terminal product ethanol (ap 



176 L . A . C . J .  Voesenek et al. 

Table 1. A survey of plant species which can elongate shoot parts under water and their root porosity [root porosity of all plants was 
measured by pycnometry (Jensen et al. 1969)]. 

Root porosity 
Shoot elongation 

Growth Root 
Species % conditions a type/part b Reference ~ Organ Reference c 

Callitriche stagnalis 14.6 CF RL 1 lnternodes 2 
Rumex crispus 18.8-20.6 CF,GSW RL,NR 1,3 Petioles/internodes 4 
Rumex conglomeratus 21-26.1 GSW,CF NR,RL 3,1 Petioles 5 
Rurnex maritimus 12.3-30 CF,GSW RL,NR 1,3 Petioles/internodes 6 
Ranunculus ligua 19.0 ~ PR 16 Petioles 7 
Epilobium hirsutum 22.2 CF RL 1 Internodes 7 
Caltha palustris 23.8 SF RL 8 Petioles 7 
Oenanthe fistulosa 23.9 CF RL 1 Petioles 7 
Aster tripolium 25.6 CF RL 1 Petioles/laminae 15 
Apium nodiflorum 28.1 CF RL 1 Petioles 7 
Ranunculus flammula 29.7-36.0 CF,SF RL 1,8 Petioles/internodes 7 
Rumex hydrolapathum 29.9 CF RL 1 Petioles 5 
Oryza sativa 35.1 CF RL 1 Coteoptiles/mesocotyls/internodes 9,10, I 1 
Carex hirta 36.3 CF RL 1 Laminae 15 
Nymphoides peltata 43.1 GMS AS 12 Petioles 13,14 
Nymphaea alba 57.0 GMS AS 12 Petioles 13 
Phragmites australis 51.9 CF RL 1 Internodes 15 

a Growth conditions: GMS, greenhouse, mineral sediment, submerged; GSW, greenhouse, sand culture, waterlogged; SF, sand culture, 
flooded; CF, John Innes no. 2 compost, flooded. 
b Root type/part: AS, apical segments (2-4 cm length); NR, newly developed roots on the tap root or on the root-shoot junction, apical 
parts of 20-30 cm length; PR, primary roots; RL, root samples, laterals removed. 

1, Justin and Armstrong (1987); 2, McComb (1965); 3, Laan et al. (1989); 4, Voesenek and Blom (1989A); 5, personal observation, 
Voesenek; 6, Van der Sman et al. (1991); 7, personal observation, Ridge and Amarasinghe; 8, Smirnoff and Crawford (1983); 9, Ku et 
al. (1970); 10, Suge (1971); 11, Metraux and Kende (1983); 12, Smits et al. (1990); 13, Funke and Bartels (1937); 14, Ridge and 
Amarasinghe (1984); 15, personal observation, H. van de Steeg; 16, Crawford (1983). 

Rees et al. 1987), although the toxicity is probably 
too low to be harmful or fatal. Two theories, ex- 
plaining metabolic differences between flood- 
tolerant and intolerant plant species, have devel- 
oped during the last decades: the metabolic theory 
of flood tolerance of Crawford (1978) and a theory 
concentrated on the regulation of cytoplasmic aci- 
dosis (Davies et al. 1974, Roberts et al. 1984A, B). 

According to Crawford (1978), plants that are in- 
tolerant to flooding respond to hypoxic environ- 
mental conditions with a significant increase in Pas- 
teur effect and/or alcohol dehydrogenase activity. 
The increased production of ethanol accumulates in 
the root tissue and causes cell death. Flood-tolerant 
plants, however, are able to avoid the production of 
potentially toxic ethanol. In these plants the less 
toxic malate was assumed to accumulate. Argu- 
ments that counteract the Crawford theory concen- 
trate on the high rates of ethanol production in 
flood-tolerant plants (Smith and ap Rees 1979A), 
the lack of evidence that ethanol is sufficiently toxic 
(Jackson et al. 1982), the small net ATP production 
of this route (Jackson and Drew 1984), the presence 
of malic enzyme in flood-tolerant plants (Smith and 

ap Rees 1979B), and the very limited evidence that 
these plants actually accumulate malate. 

The theory of Davies and Roberts indicates that 
roots respond to hypoxia with a transient lactic fer- 
mentation. As a consequence the cytoplasmic pH 
declines, triggering ethanolic rather than lactate fer- 
mentation. Consequently, no further cytoplasmic 
acidosis occurs when escape of CO 2 to the environ- 
ment is not prevented (Davies et al. 1974, Roberts 
et al. 1984A, B). Variation in flood tolerance may be 
explained in part by differences in ethanolic fermen- 
tation. Roots with a limited ethanol production un- 
dergo significant lactic fermentation causing cyto- 
plasmic acidosis and cell death (see Sieber and 
Br~indle 1991). Recently, Menegus et al. (1989) 
demonstrated that flood-tolerant species like rice 
exhibit a limited lactate production and thus less 
cytoplasmic acidification than nontolerant species 
like maize and wheat. Interspecific differences in 
flooding resistance can also be related to variation 
in permeability of the tonoplast to protons (Roberts 
et al. 1984A). Finally, prevention of CO2 escape can 
significantly increase cytoplasmic acidosis in cer- 
tain plant species and this could lead to earlier cell 
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Table 2. Leng th  of  root  tips (N = 20; +- SE) after a hypoxic  
incubat ion of  several  hours  (6, 9, 12, 15, 18) followed by an 
aerated regrowth period o f  7 days  at 20~C. 

Species  

Exposure  Length  o f  Ethanol  
t ime (h) root  tips concentra t ion 
to hypoxia  (mm) (p, mol gDW ~) 

Rumex acetosa 6 6.4 +- 0.2 30 -+ 0 
9 5.1 -+0.1 5 0 •  5 

12 5.1 • 0.1 60 _+ 5 
15 5.0 • 0.1 70 +_ 10 
18 5.0 • 0 70 _+ 0 

Rumex crispus 6 8.5 • 0.2 260 +- 5 
9 6.3 -+ 0.2 330 -+ 5 

12 5.4 - 0.1 370 --- 30 
15 5.1 +- 0.1 420 --- 35 
18 5.0 - 0 480 --+- 40 

Rumex palustris 6 8.0 -+- 0.2 220 -+ 10 
9 7.5 - 0.3 330 - 50 

12 6.9 +-- 0.1 380 - 75 
15 5.6 • 0.2 420 • 40 
18 5.0 • 0 470 • 20 

The excised root  tips had a length of  5.0 m m  before hypoxic 
incubat ion (when no regrowth occurred root  tips were a s sumed  
to be dead;  this was conf i rmed by te trazol ium staining). The  
cumulat ive  e thanol  concentra t ion  (N = 2; -+ SE) in hypoxic  
solutions of  10 ml filled with 150-300 rng pr imary root tips (see 
Voesenek  et al. 1992B). 

death (Roberts et al. 1985, ap Rees et al. 1987). 
Additional evidence for this last theory was gath- 
ered in a recent comparative study of three Rumex 
species: R. acetosa, R. crispus, and R. palustris 
(see section Rumex as a Model). Survival of ex- 
cised root tips under hypoxic in vitro conditions 
was positively correlated with ethanolic fermenta- 
tion rate, measured as ethanol production (Table 2). 
Root tips of R. acetosa showed a low tolerance 
towards hypoxia accompanied by low alcoholic fer- 
mentation, whereas the opposite was observed in 
both R. crispus and R. palustris (Voesenek et al. 
1992B). 

Besides the shift in metabolism from oxidative 
phosphorylation to predominantly ethanolic fer- 
mentation, the pattern of gene expression dramati- 
cally alters under anaerobic conditions. At the mo- 
lecular level the normal protein synthesis is re- 
pressed,  whereas  the expression of anaerobic 
polypeptide (ANP) genes is induced. ANPs most 
probably facilitate the metabolism of carbohydrates 
and contribute to the survival of the plant cell dur- 
ing anoxia (Walker et al. 1987). 

Anaerobic injury is not only restricted to the ac- 
tual period of anoxia, but damage can also occur 
after restoration of the normal oxygen conditions 
(Crawford 1989). This postanoxic injury is probably 

related to a burst in superoxide radical production 
due to the shift from anaerobic to aerobic condi- 
tions (Toai and Bolles 1991). Superoxide dismutase 
is assumed to be an important enzyme in the free 
radical-scavenging pathway and thus important in 
the protection of plant cells against oxygen toxicity 
(Crawford 1989). Additionally, accumulated metab- 
olites, such as ethanol, can be oxidized to poten- 
tially harmful products ,  such as ace ta ldehyde  
(Crawford 1989, Studer and Br~indle 1987). 

Dramatic changes in both light and carbon avail- 
ability strongly interfere with the process of under- 
water photosynthesis.  This photosynthesis  can 
have a significant impact on the continuation of var- 
ious processes: 

1. It produces carbohydrates essential for sustain- 
ing shoot elongation (Raskin and Kende 1984A) 
and increased glycolytic rates (Setter et al. 
1987). 

2. The oxygen produced may assist internal aera- 
tion (Gaynard and Armstrong 1987, Laan and 
Blom 1990, Voesenek et al. 1992B, Waters et al. 
1989). 

The supply of carbon is rate-limiting for photo- 
synthesis and growth of submerged aquatic plants 
(Sand-Jensen 1987). It is likely that this direct lim- 
itation restricts carbon fixation rates more than re- 
duced irradiation (Black et al. 1981). Submerged 
aquatic plants, which during evolution returned 
from a terrestrial to an aquatic environment can be 
seen as a highly special ized group of  plants 
(Sculthorpe 1967). They have developed an array of 
adaptations to relieve the constraints of carbon lim- 
itation. As mentioned before many aquatic plants 
have thin, finely dissected leaves with a thin cuticle 
to optimize p lant -water  contact  (Sand-Jensen 
1987). A rather specialized group of aquatic plants 
growing in CO2-poor waters, can use CO2 directly 
from the sediment. The carbon dioxide is "piped"  
via a longitudinally interconnected system of gas 
channels to the leaves (Bowes 1987). An adaptation 
which is especially advantageous in water with a 
high pH is the direct use of bicarbonate (HCO3-) as 
the main carbon source (Bowes 1987, Sand-Jensen 
1987, Smits et al. 1988). Other CO2-concentrating 
mechanisms which can operate  in submerged 
aquatic plants are linked to Ca and CAM metabo- 
lism (Bowes 1987, Keeley 1987). Since pH indi- 
rectly affects photosynthesis via the carbon equilib- 
rium, it must be an adaptive trait that some sub- 
merged aquatic macrophytes can regulate the pH of 
the aqueous boundary layer around their leaves 
(Prins et al. 1982). Finally, it is also possible that a 
submerged aquatic plant develops aerial leaves 
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which photosynthesize at high rates once these 
leaves gain a surface position (Bowes 1987). Ethyl- 
ene-mediated shoot growth to reposition leaves 
above the water surface can therefore not only be 
seen as a mechanism which restores root aeration, 
but it may play a significant role in the restoration of 
the carbon gain after submergence. 

All of these adaptations with regard to carbon 
availability, which are fully documented for various 
aquatic plants, are only scarcely investigated for 
occasionally flooded terrestrial plants. However, 
there is some evidence that amphibious plants are 
poor HCO 3- users (Spence and Maberly 1985). 
There are some indications that elongated petioles 
and leaves of submerged terrestrial plants dessic- 
cate rapidly after lowering of the water level (Ridge 
1987, Voesenek and Blom 1989A). This might be 
related to thinner cuticles under water, which can 
enhance underwater photosynthesis. 

Plants use light both as a source of energy (pho- 
tosynthesis) and as a source of positional and tem- 
poral information (Holmes and Klein 1987). As far 
as we know no data are available concerning the use 
by terrestrial plants of the information embedded in 
changes in light quality with increasing water 
depths. There is, however, evidence that the phy- 
tochrome photoequilibrium plays a significant role 
in the induction of aerial leaves in amphibious 
plants (Spence et al. 1987). 

The high density of the flooding medium can be of 
significance. The reduced investment in, for exam- 
ple, lignin, often observed in submerged amphibi- 
ous plant species (Ridge 1987), might have an im- 
portant impact on the potential investment in an 
alternative process, such as shoot elongation. 

With regard to the gaseous growth regulator eth- 
ylene, both waterlogging and submergence have a 
severe impact on production rates and concentra- 
tions in root and shoot tissues. Due to the low dif- 
fusion rate of gases in water, concentrations of ox- 
ygen, carbon dioxide, and ethylene may signifi- 
cantly change in response to flooding. Regardless of 
daily fluctuations and circadian rhythms, carbon di- 
oxide and ethylene levels generally increase under 
submerged conditions, whereas oxygen concentra- 
tions decrease (Van der Sman et al. 1991, St/Jnzi 
and Kende 1989, Voesenek et al. 1990A). The ele- 
vated ethylene levels may stimulate formation of 
lysigenous aerenchyma and enhanced shoot growth 
to restore leaf-atmosphere contact after submer- 
gence. Both acclimatizations improve the oxygen 
status of the plant, whereas an increase in aerial 
photosynthesis, due to shoot elongation, may re- 
lieve the strong carbon limitation of terrestrial 
plants under water. 

Photoacoustic Detection of Ethylene 

The photoacoustic effect was first reported by Al- 
exander Graham Bell in 1880 (Bell 1880, 1881). He 
discovered that thin disks (e.g., selenium, carbon, 
hard rubber) emitted sound when exposed to a rap- 
idly interrupted beam of sunlight. Very soon, how- 
ever, the interest in the photoacoustic principle de- 
clined. Renewed attention was gained by the inven- 
tion of powerful lasers. 

The photoacoustic effect (e.g., the transforma- 
tion of light energy into acoustic energy) is based on 
the fact that molecules absorb electromagnetic ra- 
diation. As a consequence they are excited to a 
higher energy level. Excited molecules can fall back 
to their original ground state via two processes: ra- 
diative decay and nonradiative decay. In the infra- 
red region this leads almost exclusively to nonradi- 
ative decay. De-excitation or relaxation increases 
the kinetic energy and temperature of all the gas 
molecules around the excited molecules. When this 
process takes place in a constant volume it in- 
creases the pressure. When the light source is 
chopped at an audiofrequency, pressure fluctua- 
tions of the same frequency occur inside that con- 
stant volume (Harren 1988). 

Depending on the structure of a molecule, vibra- 
tional absorption bands are distributed over the en- 
tire range of the infrared wavelength region (1-50 
p.m). These bands can occur as narrow peaks or be 
spread out over several wavelengths. The CO 2 
wavelength laser region (9-11 txm), however, cov- 
ers only a small part of the infrared wavelength re- 
gion. Molecules without a vibrational absorption in 
this region (e.g., CH 4, C2H6) therefore cannot be 
detected by CO 2 lasers. Molecules that do absorb in 
this region (e.g., C2H 4, NH3, 03, H20) show a 
highly specific and unique absorption pattern (Har- 
ren et al. 1990A, Meyer and Sigrist 1990). For these 
molecules distinct fingerprint-like absorption spec- 
tra can be observed for the 90 discrete laser transi- 
tions in the 9-11 Ixm infrared wavelength region (see 
Fig. 3). Due to strong absorption by ethylene at the 
CO2 laser wavelengths it has been possible to detect 
very low ethylene concentrations in air (Harren et 
al. 1990A, Van der Sman et al. 1991, Voesenek et 
al. 1990A, Woltering and Harren 1989, Woltering et 
al. 1988). To improve the sensitivity of the photoa- 
coustic system further, the acoustic cell was placed 
inside the COz laser cavity. The accompanying in- 
crease in laser power to approximately 150 W re- 
sulted in a detection limit of six parts of ethylene in 
1012 parts of air (Harren et al. 1990B). 

During application of this method in plant physi- 
ological experiments, intact plants were placed in 
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Fig. 2. The experimental assembly of a continuous flow system 
in line with a laser-driven intracavity photoacoustic detection 

system to monitor ethylene production of plants. For more in- 
formation see Harren (1988). 

small glass sample cells (200--600 cm 3) with inlet and 
outlet ports. To avoid the influence of changed ox- 
ygen, carbon dioxide, and ethylene levels on the 
ethylene production by plants, the sample cells 
were continuously flushed with air at 0.5-4.5 L/h 
after passing over a catalyst to remove traces of 
hydrocarbons. The catalyst consisted of a copper 
tube (length: 6 m) filled with platinized A1203 pel- 
lets heated at a temperature of 400~ Under  
these conditions nearly all hydrocarbons dissoci- 
ate into carbon dioxide and water. Between the 
plant-holding cell and the photoacoustic cell, a 
KOH-based scrubber eliminated CO2 without influ- 
encing the ethylene concentration (Fig. 2). Almost 
complete removal of CO2 is essential, since it coin- 
cides exactly with the laser transitions of the CO 2 
laser. 

The strongest ethylene absorption in the CO2- 
laser wavelength region (9-11) ~m) was observed at 
the 10P14 CO2 laser line (10.53 Ixm), a much weaker 
absorption was observed at the 10P12 line (10.51 
p,m) (Brewer et al. 1982) (Fig. 3). During one mea- 
surement cycle, absorptions and the accompanying 
microphone signals were determined on both laser 
lines and recalculated to correct for the background 
signal. A stepmotor-driven grating regulated the 
transfers between both laser lines. The laser power 
on both lines was maximized during every measure- 
ment cycle with the aid of a computer-controlled 
piezo. 

The higher sensitivity of photoacoustic detection 
of ethylene compared to gas chromatographic tech- 
niques allowed the use of continuous flow systems 
without collection traps. Ethylene can be measured 
directly in the effluent of the sample cells. The pho- 
toacoustic principle allowed, for the first time, reg- 
istration of fast, short-lasting changes in ethylene 
production, such as the fast release of ethylene after 
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Fig. 3. Absorption strength of ethylene at CO 2 laser wavelengths 
in the 9-11 vLm region. The identification of the individual laser- 
lines is deduced from molecular spectroscopy. It indicates which 
rotational and vibrational quantum states are involved in the 
laser transitions. 

de-submergence of plants (Voesenek et al. 1992C). 

Ethylene and Waterlogging 

The general plant responses towards long-term soil 
waterlogging, in terms of survival, indicate that all 
R u m e x  species are relatively resistant. R u m e x  ace- 
tosa, R.  crispus, and R.  palustris (for field distribu- 
tion, see Fig. 1) can survive waterlogging under 
greenhouse conditions (day temperature, 20-30~ 
for at least 9 weeks. A relatively large interspecific 
variation in biomass increment was detected during 
such a waterlogging period. Reduced growth under 
these conditions was observed in R.  acetosa within 
40 days of waterlogging. Species from wet field sites 
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(i.e., R. maritimus, R. palustris, and R. crispus) 
showed a slightly increased shoot biomass after 
flooding of the soil (Van der Sman et al. 1988, Voe- 
senek et al. 1989). The root biomass of R. crispus 
and R. palustris, however, was characterized by an 
inhibited biomass increase under these conditions. 
All Rumex species under study were able to de- 
velop a new root system in response to waterlog- 
ging (Laan et al. 1989, Van der Sman et al. 1988, 
Voesenek et al. 1989). These new roots can be di- 
vided into two morphological types: (1) strongly 
branched, thin, superficially growing roots; and (2) 
thick, white, hardly branched roots, which pene- 
trate into deeper waterlogged soil layers (Voesenek 
et al. 1989). The high surface area/volume ratio of 
the thin roots might be adaptive in relation to the 
exploitation of oxygen from the upper water/soil 
layers (Armstrong et al. 1991). The seldomly 
flooded dry land species (i.e., R. acetosa and R. 
thyrsiflorus) developed very few new roots, with a 
maximum new growth of 10% of the length of the 
original primary root system. In contrast, extensive 
production of these roots was observed in species 
found in frequently flooded localities (i.e., R. ma- 
ritimus, R. conglomeratus, R. palustris, and R. 
crispus). Here, up to 50% of the original root length 
was regenerated (Laan et al. 1989, Voesenek et al. 
1989). These latter species developed a schizoge- 
nous type of aerenchyma in the new roots (Laan et 
al. 1989). These longitudinally interconnected gas- 
filled channels are functionally related to the use of 
aerial oxygen for energy acquisition via aerobic root 
respiration (Laan et al. 1990). 

The slight increase of shoot biomass in R. mari- 
timus, R. crispus, and R. palustris in response to 
waterlogging is related to a significant increase in 
lamina and petiole length (Van der Sman et al. 1988, 
Voesenek et al. 1989). In addition, stimulated stem 
growth in response to soil flooding was observed in 
generative R. maritirnus plants (Van der Sman et al. 
1988). Rumex from seldomly flooded field loca- 
tions, such as R. acetosa, showed a different type 
of response in which no growth enhancement of the 
existing petioles occurred, whereas petioles which 
developed entirely during the waterlogging treat- 
ment showed a small, but significant, increase in 
length (Voesenek et al. 1990A). 

The role of ethylene in the physiology of flooded 
roots has not been extensively studied for Rumex 
species. However,  in flooded maize roots there is 
convincing evidence that the lysigenous type of aer- 
enchyma is induced by enhanced ethylene levels 
(Drew et al. 1979, Konings 1982). The role of eth- 
ylene in the lysigenous breakdown of cortical cells 
in rice seems to depend on the type of cultivar: 
Jackson and coworkers (1985B) found no effect of 

ethylene, whereas a small promotion of aeren- 
chyma formation was demonstrated by Justin and 
Armstrong (1991) in another cultivar; flooded con- 
ditions are known to increase porosity in some cul- 
tivars (Armstrong 1971). Nothing is known about 
the inductive mechanisms in the schizogenous type 
of aerenchyma, which develops extensively in 
flooding-resistant Rumex species (Armstrong et al. 
1991). It will be worthwhile to study whether eth- 
ylene promotes aerenchyma formation in Rumex 
and also whether interspecific differences in gas- 
channel development, as observed in this genus, are 
related to differences in internal ethylene concen- 
trations and/or sensitivities towards this gaseous 
growth regulator. 

It is well known that ethylene influences the rate 
of root extension. Under well-aerated conditions, 
low ethylene levels (0.02-0.1 ppm) stimulate root 
extension, whereas high concentrations (1-I0 ppm) 
inhibit root growth in rice and tomato (Jackson 
1985B). Interspecific variation between both spe- 
cies was observed in the ethylene concentration 
that actually stimulates root growth and in the de- 
gree of growth inhibition at high ethylene levels 
(Jackson and Pearce 1991). The internal ethylene 
concentration of a flooded root depends on its eth- 
ylene production level, the surface area/volume ra- 
tio, the permeability of the surface layers, the root 
porosity, and the depth of the covering water layer 
(Konings and Jackson 1979). The final responses in 
terms of root extension will also depend on the sen- 
sitivity of the root tissue to partial pressures of eth- 
ylene (Jackson and Pearce 1991). Laan (1990) re- 
lated the interspecific variation in root growth of 
primary and newly formed laterals in the genus 
Rumex to differences in root porosity and the con- 
comitant ability to use internal aeration. In addi- 
tion, it is important to broaden our knowledge on 
the role of the ethylene economy in the process of 
root extension of waterlogged Rumex species. 

According to criteria formulated by Jacobs (1959) 
and Jackson (1987), there is convincing evidence 
that ethylene plays an important role in the regula- 
tion of Rumex shoot growth in response to water- 
logging. The enhanced petiole growth in R. crispus 
and R. palustris is accompanied by a significant in- 
crease in the ethylene production of the shoot. This 
production increase starts within a few hours after 
the onset of the waterlogging treatment. It reaches 
its highest production rate after 5--6 h. After a sharp 
decrease, the production again gradually increases 
up to approximately 10 nl gDW-J h-1 after 7 days 
of waterlogging (control production, 0.5-1.5 nl 
gDW-1 h-1). During this second increase, a dis- 
tinct circadian rhythm was observed in the forma- 
tion of ethylene. Rumex acetosa, showing no stim- 
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ulation of growth by the youngest petiole, increased 
its production level by only twofold during the same 
time course. The difference in ethylene production 
in response to waterlogging between R. acetosa and 
R. palustris correlates well with changes in ACC 
levels in the shoots of these species. Additionally, a 
slight, but reproducible, increase in the activity of 
the ethylene-forming enzyme (EFE), catalyzing the 
conversion of ACC to ethylene, was observed in all 
species (Voesenek et al. 1990A). Bradford and 
Yang (1980, 1981) showed (for waterlogged tomato 
plants) that ACC accumulates in the roots and sub- 
sequently is transported to the shoot where conver- 
sion to ethylene takes place. It is possible that such 
a process occurs in waterlogged Rumex plants, but 
some movement of ethylene from the root to the 
shoot via aerenchyma channels cannot be ruled out 
(see Jackson and Cambell 1975, Zeroni et al. 1977). 

The stimulation of petiole growth in R. crispus 
and R. palustris in response to soil flooding can be 
mimicked by exposing air-grown plants to elevated 
levels of ethylene. A partial pressure of 0.5 Pa was 
necessary to saturate the response. Rurnex acetosa 
showed a very different response to exogenous eth- 
ylene. High concentrations significantly inhibited 
petiole growth; low partial pressures (0.1 Pa), how- 
ever, demonstrated a trend towards a slight growth 
stimulation (Voesenek and Blom 1989A). 

Ethylene production in Rumex plants under wa- 
terlogged conditions was significantly reduced 
when they were pretreated with AVG, an inhibitor 
of ethylene biosynthesis. This treatment also signif- 
icantly reduced the stimulated petiole growth. Iden- 
tical results were obtained with Ag § ions, inhibitors 
of ethylene action (Voesenek et al. 1990A). 

The regulating role of  ethylene in the shoot 
growth of waterlogged Rurnex species has also rel- 
evance to higher levels of organization. Both R. 
crispus and R. palustris increased their petiole 
length in response to excess water under field con- 
ditions. Rumex acetosa, on the other hand, showed 
no significant growth stimulation (Voesenek and 
Blom 1989A). 

Rumex species differ strongly in their ethylene 
economy. The growth of petioles of R. acetosa is 
inhibited by high ethylene concentrations. High lev- 
els in the shoot of this species are probably pre- 
vented under waterlogged conditions since the eth- 
ylene production increases only slightly. Low mo- 
mentary internal ethylene concentrations may even 
slightly stimulate the growth of newly developed 
petioles. This is in accordance with the occurrence 
of R. acetosa in moist hayfields with high ground 
water levels. Both R. crispus and R. palustris are 
characterized by enhanced petiole growth in re- 
sponse to high ethylene levels. If we assume that 

elongating petioles is an adaptive trait under water- 
logged conditions, a strong enhancement of the eth- 
ylene production must be favorable to this growth 
response. The petiole growth is probably function- 
ally related to an increase of the photosynthetic 
area and maximal diffusion of oxygen to the oxy- 
gen-deficient roots, if a large part of the shoot pro- 
trudes above the raised water level. Since both R. 
crispus and R. palustris commonly grow in fre- 
quently flooded parts of Dutch river areas, where 
waterlogging is a transient phase between periods 
with drained soils and periods with complete sub- 
mergence, their ethylene economy corresponds 
well with their field distribution. 

Ethylene and Submergence 

Within a few hours after complete submergence the 
laminae and petioles of wetland Rumex species like 
R. maritirnus, R. palustris, R. crispus alter their 
orientation from prostrate to vertical. This is ac- 
companied by a significant stimulation of  the 
growth rate of  both petioles and laminae. The 
strongest growth enhancement is achieved in the 
youngest petioles (Laan and Blom 1990, Van der 
Sman et al. 1991, Voesenek and Blom 1989A, B). 
This shoot elongation response is observed in many 
other species occurring in the interface regions be- 
tween land and water (see Table 1; Osborne 1984, 
Ridge 1987, Schwegler  and Br~indle 1991). In 
Rumex species this petiole elongation can, to a 
great extent, be attributed to increased cell expan- 
sion (Voesenek et al. 1990B). In other plant species, 
like Ranunculus repens and Nymphoides peltata, 
with comparable petiole responses to submergence, 
a relatively great contribution of cell division to the 
total elongation response was demonstrated (Ridge 
1985). Rurnex acetosa, a representative from infre- 
quently flooded field sites, showed no stimulated 
shoot extension in response to complete submer- 
gence (Voesenek and Blom 1989A). 

The enhanced shoot growth is functionally re- 
lated to the restoration of contact between the shoot 
and the atmosphere. This enables the continuation 
of aerobic respiration, aerial photosynthesis, and 
wind- or insect-mediated pollination (Jackson 
1985A). Lower shoot, taproot, and lateral root bio- 
mass were observed in continuously submerged R. 
maritimus plants when compared with plants with 
their leaf tips protruding (7 cm) above the water. 
When the water surface was not reached under 
greenhouse conditions, all R. maritimus plants died 
within 4 weeks (Laan and Blom 1990). In an exper- 
iment, presented in Table 3, survival of three 
Rurnex species, with different field locations in a 
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Table 3. The survival (%; N = 8) of Rumex species after 1 week 
of complete submergence followed by various durations of par- 
tial (2-4 cm of the leaf tips protruded above the water surface) 
and complete submergence. 

Duration Partial Complete 
Species (weeks) submergence submergence 

R. acetosa 3 88 38 
6 0 0 
9 0 0 

R. crispus 3 I00 100 
6 100 38 
9 100 13 

R. palustris 3 100 100 
6 100 50 
9 100 0 

flooding gradient, was studied under partially sub- 
merged conditions (leaf tips protruded 2-4 cm 
above the water surface), as well as complete sub- 
mergence. All plants of R.  crispus and R. palustris 
survived under the partially submerged conditions, 
whereas severe mortality occurred when no leaf 
parts protruded from the water surface. In R. ace- 
tosa no survival was observed after prolonged par- 
tial and complete submergence. The long diffusion 
pathway under partially submerged conditions, in 
combination with a limited development of aeren- 
chyma, presumably prevented any improvement in 
oxygen status of the roots in this species. In sum- 
mary, shoot-atmosphere contact is of the utmost 
importance for the survival of flooded R u m e x  
plants, but the efficiency in which this enhanced 
shoot growth can aerate the root system and can 
contribute to an increased survival, depends on the 
porosity of  both shoot and root systems. 

R u m e x  mari t imus  behaves as an annual when it 
germinates before the end of June. However, plants 
that germinate in April and May will give the largest 
seed production (Van der Sman et al. 1991). Since 
seed germination in R u m e x  is obligately aerobic 
(Voesenek 1990), timing of seedling emergence in 
the field depends on withdrawal of the flood water. 
Highly elevated sites will be characterized by tall R. 
mari t imus plants that flower early, while the lower 
zones contain mainly short rosette plants due to 
delayed germination. Unpredictable flooding in the 
middle of the growing season will lead to submer- 
gence of R.  mari t imus in various stages of the life 
cycle, such as rosette, bolting stage, or at flowering. 
These stages strongly differ in petiole and stem (in- 
ternode) elongation responses to complete submer- 
gence (Fig. 4). The rosette stage was characterized 
by a rapid extension of petioles. This elongation 
was much less in the bolting stage, although a 
strong growth enhancement was observed in the in- 
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Fig. 4. Petiole (left) and internode (right) lengths (+  1 SE; SEs ~< 
1 mm are not indicated) of Rumex rnaritimus plants after 4 days 
of submergence (open bars), in comparison with nonsubmerged 
plants (closed bars), in three stages of development: (a) rosette; 
(b) bolting; (e) flowering. Numbers indicate leaves and inter- 
nodes in the order of appearance with the first internode 
stretched between leaves 6 and 7. The last two leaves and the last 
internode in stages (a) and (b) were initiated during the treat- 
ment. 

ternodes. In the flowering stage, extension of both 
petioles and internodes was almost nonexistent 
(Fig. 4). This shift from extension of petioles to 
elongation of internodes and the decrease of the 
enhanced growth response upon flooding in the 
course of the development of a flowering plant 
stresses the importance of studying all parts of the 
life cycle (see Blom 1979, Grime 1979). Because of 
its short life cycle, R. marit imus is very suitable for 
studies on the impact of stem elongation on seed 
production. This fitness-related parameter was sig- 
nificantly reduced in flooded plants, when com- 
pared with drained ones (Fig. 5). The amount of 
shoot elongation, expressed as final stem length, 
was positively correlated with seed output. Very 
low seed production was recorded for plants that 
exhibited little or no elongation and therefore be- 
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Fig. 5. The seed output of three length classes of R um ex  mari- 
t imus (g/plant; N = 3-5; + 1 SE) in response to drained (C) and 
flooded (F) conditions. During this last treatment, ethylene- 
mediated internode elongation occurred during the bolting stage. 
Means with the same letters are not significantly different. 

longed to length class <50 cm. Intermediate seed 
production was observed in the 50-54 cm length 
class, whereas most seeds were produced by plants 
with the largest amount of shoot tissue above the 
water surface (Fig. 5). This effect cannot simply be 
explained by variation in biomass since no signifi- 
cant differences in seed output were observed be- 
tween the same length classes grown under non- 
flooded conditions (Fig. 5). 

Both petiole and stem elongation in Rumex spe- 
cies under submerged conditions can be correlated 
with increased internal concentrations of the gas- 
eous plant hormone ethylene (Van der Sman et al. 
1991, Voesenek and Blom 1989A, Voesenek et al. 
1992C). The growth rate ofR.  crispus and R. palus- 
tris petioles increases within 5 hours; this matches 
the kinetics of the rise in the endogenous ethylene 
levels (Voesenek and Blom 1989B). The internal 
ethylene concentrations are enhanced in all studied 
Rumex species, including those with no growth 
stimulation. Experiments with the laser-driven pho- 
toacoustic detection technique showed us that large 
differences in endogenous ethylene levels can occur 
between and within the various Rumex species, af- 
ter 24 h of submergence. Rumex palustris showed 
an internal concentration of 3-5 nl/ml under these 
conditions. Rumex acetosa, a representative from 
seldomly flooded locations, contained 1.5-6 nl/ml. 
Since enhanced ethylene levels in submerged plans 
are partly a consequence of the 10,000 times slower 
diffusion rate in water compared to air, the influ- 
ence of water depth and surface area/volume ratio 
cannot be ignored. Deeper water and thicker tissue 
increase the entrapped ethylene levels (Jackson 

1985B). Neither water depth nor surface area/ 
volume ratio were, however, a source of variation 
in the experiments comparing the internal ethylene 
concentrations ofR.  acetosa and R. palustris under 
submerged conditions. The endogenous ethylene 
concentration is determined not only by the efflux 
of this gas to the external environment, but also by 
the rate of production. Preliminary results with two- 
compartment cuvettes, which separate the ethylene 
produced by shoot and root, indicate that neither R. 
palustris nor R. acetosa increase their rates of eth- 
ylene production in the shoot during a 24-h submer- 
gence period (Voesenek, unpublished observa- 
tions). However, an enhanced ethylene biosynthe- 
sis in the shoot under submerged conditions can 
occur as was demonstrated for deep water rice (Co- 
hen and Kende 1987, Kende et al. 1984, Raskin and 
Kende 1984B). Extra ethylene production, above 
the level induced by submergence, was observed 
after de-submergence of R. maritimus in the bolting 
stage (Van der Sman et al. 1991) and R. palustris in 
the rosette stage (Voesenek et al. 1992C). It is pos- 
sible that accumulated ACC, due to submergence, 
was only partly converted to ethylene. The remain- 
ing ACC may have been converted to ethylene after 
de-submergence (Van der Sman et al. 1991). 

The presence of other hormones, such as auxin, 
gibberellin, or abscisic acid, seems essential for 
ethylene- or submergence-induced shoot elonga- 
tion. This aspect of the physiology of "depth ac- 
commodation" is extensively studied and discussed 
for various plant species (Cookson and Osborne 
1978, Hoffmann and Kende 1991, Horton and Sa- 
marakoon 1982, Jackson 1985A, Jackson  and 
Pearce 1991, Malone and Ridge 1983, Musgrave et 
al. 1972, Osborne 1984, Raskin and Kende 1984C, 
Ridge 1987, Waiters and Osborne 1979). There is 
experimental evidence that gibberellin is involved 
in petiole elongation of R. palustris in response to 
exogenous ethylene and submergence (Fig. 6). Pa- 
clobutrazol, an inhibitor of the gibberellin biosyn- 
thesis at the ent-kaurene to ent-kaurenic acid con- 
version step, partly inhibits petiole elongation dur- 
ing submergence and external ethylene application. 
Under submerged conditions this effect could be 
reversed by addition of GA 3. 

Shoot elongation in response ethylene may also 
interact with CO2 concentration, 02 concentration, 
light quantity and quality, buoyant tension, and the 
availability of water (Ridge 1987). These factors 
provide a reasonable explanation for the slightly re- 
duced elongation response in Rumex and deep- 
water rice in response to exogenous ethylene com- 
pared to growth under  submerged condit ions 
(Raskin and Kende 1984B, Van der Sman et al. 
1991, Voesenek and Blom 1989A). 
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Fig. 6. Petiole length of  Rumex palustris (N = 9-13; + 1 SE) in 
response to addition of  GA 3 (5 I~M) and/or paclobutrazol (1 p.M 
pretreatment of  4 days and 0.1 txM in the flooding water) under 

control and submerged conditions and under exogenous ethylene 
application. Means with the same letter within the submergence 
and ethylene experiment are not significantly different. 

In response to submergence, wetland Rumex spe- 
cies accumulate large amounts of ethylene in their 
intercellular spaces and probably also in their cells. 
These high levels can to a great extent be explained 
by entrapment due to the slow diffusion of ethylene 
in water. In accordance with the ethylene sensitiv- 
ity of petioles, stems, and laminae, these high con- 
centrations lead to a rapid restoration of the shoot- 
atmosphere contact in these species, whenever the 
flooding is not to deep. Since these species occur in 
frequently flooded areas, in which 70% of the floods 
in the growing season do not exceed a maximum 
water depth of 100 cm (AIM van der Sman, per- 
sonal communication), their ethylene economy cor- 
responds well with their field distribution. The extra 
ethylene production after de-submergence, essen- 
tial to maintain a high internal ethylene concentra- 
tion, might be related to a continuation of growth to 
establish a substantial part of the shoot above the 
water surface (Van der Sman et al. 1991). 

Growth-inhibitory high levels of ethylene can oc- 

cur in R. acetosa, a species from seldom-flooded 
field sites. 

It is our belief that these two groups of Rumex 
species (group I, R. acetosa and R. thyrsiflorus; 
group II, R. palustris, R. crispus, and R. maritimus) 
from contrasting sites in a flooding gradient, illus- 
trate two examples in a continuum of strategies, in 
which the ethylene economy of plant species plays 
an important role in flooding resistance and field 
distribution. Species group I is probably not at one 
extreme of such a continuum. An intriguing ques- 
tion and one of the research goals for the future is 
how the balance between ethylene sensitivity and 
internal concentration is tuned in species that are 
even more intolerant of flooding than R. acetosa 
and R. thyrsiflorus. 
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